業績

原著論文

2016

ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex.
Park K., Ikushiro H., Seo H.S., Shin K.O., Kim Y.I., Kim J.Y., Lee Y.M., Yano T., Holleran W.M., Elias P., Uchida Y.
Proc. Natl. Acad. Sci. USA 113, E1334–E1342 (2016)
PMID 26903652 DOI 10.1073/pnas.1504555113

2015

Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions.
Murakawa T., Hamaguchi A., Nakanishi S., Kataoka M., Nakai T., Kawano Y., Yamaguchi H., Hayashi H., Tanizawa K., Okajima T.
J. Biol. Chem. 290, 23094–23109 (2015)
PMID 26269595 DOI 10.1074/jbc.M115.662726

2014

A QM/MM study of the L-threonine formation reaction of threonine synthase: implications into the mechanism of the reaction specificity.
Shoji M., Hanaoka K., Ujiie Y., Tanaka W., Kondo D., Umeda H., Kamoshida Y., Kayanuma M., Kamiya K., Shiraishi K., Machida Y., Murakawa T., and Hayashi H.
J. Am. Chem. Soc. 136, 4525–4533 (2014)
PMID 24568243 DOI 10.1021/ja408780c

2013

High-resolution crystal structure of copper amine oxidase from Arthrobacter globiformis: assignment of bound diatomic molecules as O2.
Murakawa T., Hayashi H., Sunami T., Kurihara K., Tamada T., Kuroki R., Suzuki M., Tanizawa K., and Okajima T.
Acta Crystallogr. D Biol. Crystallogr. 69, 2483–2494 (2013)
PMID 24311589 DOI 10.1107/S0907444913023196
Boundary of the nucleotide-binding domain of Streptococcus ComA based on functional and structural analysis.
Ishii, S., Yano, T., Okamoto, A., Murakawa, T., and Hayashi, H.
Biochemistry 52, 2545–2555 (2013)
PMID 23534432 DOI 10.1021/bi3017069

2012

Arabidopsis Molybdopterin Biosynthesis Protein Cnx5 Collaborates with the Ubiquitin-like Protein Urm11 in the Thio-modification of tRNA.
Nakai Y., Harada A., Hashiguchi Y., Nakai M., Hayashi H.
J. Biol. Chem. 287(36), 30874–30884 (2012)
PMID 22810225 DOI 10.1074/jbc.M112.350090
Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors.
Murakawa T., Hayashi H., Taki M., Yamamoto Y., Kawano Y., Tanizawa K., and Okajima T.
J Biochem. 151, 167–178 (2012)
PMID 21984603 DOI 10.1093/jb/mvr125

2011

Role of a conserved arginine residue during catalysis in serine palmitoyltransferase.
Lowther J., Charmier G., Raman M.C., Ikushiro H., Hayashi H., Campopiano D.J.
FEBS Lett. 585, 1729–1734 (2011)
PMID 21514297 DOI 10.1016/j.febslet.2011.04.013
Product-assisted catalysis as the basis of the reaction specificity of threonine synthase.
Murakawa, T., Machida, Y., and Hayashi, H.
J. Biol. Chem. 286, 2774–2784 (2011)
PMID 21084312 DOI 10.1074/jbc.M110.186205

2010

Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway.
Ishii, S., Yano, T., Ebihara, A., Okamoto, A., Manzoku, M., and Hayashi, H.
J. Biol. Chem. 285, 10777–10785 (2010)
PMID 20100826 DOI 10.1074/jbc.M109.093781

2009

Structural insights into the enzymatic mechanism of serine palmitoyltransferase from Sphingobacterium multivorum.
Ikushiro, H., Islam, M. M., Okamoto, A., Hoseki, J., Murakawa, T., Fujii, S., Miyahara, I. and Hayashi, H.
J. Biochem. 146, 549–562 (2009)
PMID 19564159 DOI 10.1093/jb/mvp100
Multifunctional role of His159 in the catalytic reaction of serine palmitoyltransferase
Shiraiwa, Y., Ikushiro, H., and Hayashi, H.
J. Biol. Chem. 284, 15487–15495 (2009)
PMID 19346561 DOI 10.1074/jbc.M808916200
Arabidopsis cytosolic Nbp35 homodimer can assemble both [2Fe-2S] and [4Fe-4S] clusters in two distinct domains.
Kohbushi H, Nakai Y, Kikuchi S, Yabe T, Hori H, Nakai M.
Biochem. Biophys. Res. Commun. 378(4), 810–815 (2009)
PMID 19084504 DOI 10.1016/j.bbrc.2008.11.138

2008

Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems.
Nakai, Y., Nakai, M., and Hayashi, H.
J. Biol. Chem. 283(41), 27469–27476 (2008)
PMID 18664566 DOI 10.1074/jbc.M804043200
Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase.
Taki, M., Murakawa, T., Nakamoto, T., Uchida, M., Hayashi, H., Tanizawa, K., Yamamoto, Y., and Okajima, T.
Biochemistry 47, 7726–7733 (2008)
PMID 18627131 DOI 10.1021/bi800623f
Substrate recognition mechanism of the peptidase domain of the quorum-sensing-signal-producing ABC transporter ComA from Streptococcus.
Kotake, Y., Ishii, S., Yano, T., Katsuoka, Y., and Hayashi, H.
Biochemistry 47, 2531–2538 (2008)
PMID 18232718 DOI 10.1021/bi702253n
Acceleration of the substrate Cα-deprotonation by an analogue of the second substrate palmitoyl-CoA in serine palmitoyltransferase.
Ikushiro, H., Fujii, S., Shiraiwa, Y., and Hayashi, H.
J. Biol. Chem. 283, 7542–7553 (2008)
PMID 18167344 DOI 10.1074/jbc.M706874200

2007

Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii.
Ikushiro, H., Islam, M. M., Tojo, H., and Hayashi, H.
J. Bacteriol. 189, 5749–5761 (2007)
PMID 17557831 DOI 10.1128/JB.00194-07
Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway.
Nakai, Y., Nakai, M., Lill, R., Suzuki, T., and Hayashi, H.
Mol. Cell. Biol. 27(8), 2841–2847 (2007)
PMID 17283054 DOI 10.1128/MCB.01321-06

2006

Gallate, the component of HIF-inducing catechins, inhibits HIF prolyl hydroxylase.
Tsukiyama, F., Nakai, Y., Yoshida, M., Tokuhara, T., Hirota, K., Sakai, A., Hayashi, H., and Katsumata, T.
Biochem. Biophys. Res. Commun. 351, 234–239 (2006)
PMID 17056012 DOI 10.1016/j.bbrc.2006.10.025
Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation.
Biederbick A., Stehling O., Rösser R., Niggemeyer B., Nakai Y., Elsässer H.P., and Lill R.
Mol. Cell Biol. 26(15), 5675–5687 (2006)
PMID 16847322 DOI 10.1128/MCB.00112-06
Expression and characterization of the peptidase domain of Streptococcus pneumoniae ComA, a bifunctional ATP-binding cassette transporter involved in quorum sensing pathway.
Ishii, S., Yano, T., and Hayashi, H.
J. Biol. Chem. 281, 4726–4731 (2006)
PMID 16377622 DOI 10.1074/jbc.M512516200

2005

Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.
Islam, M.M., Goto, M., Miyahara, I., Ikushiro, H., Hirotsu, K., and Hayashi, H.
Biochemistry 44, 8218–8229 (2005)
PMID 15938611 DOI 10.1021/bi050071g

2004

Reactions of serine palmitoyltransferase with serine and molecular mechanisms of the actions of serine derivatives as inhibitors.
Ikushiro H., Hayashi H., and Kagamiyama H.
Biochemistry 43, 1082–1092 (2004)
PMID 14744154 DOI 10.1021/bi035706v
Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs.
Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H.
J. Biol. Chem. 279(13), 12363–12368 (2004)
PMID 14722066 DOI 10.1074/jbc.M312448200

2003

Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution.
Hoseki, J., Okamoto, A., Takada, N., Suenaga, A., Futatsugi, N., Konagaya, A., Taiji, M., Yano, T., Kuramitsu, S., and Kagamiyama H.
Biochemistry 42(49), 14469–14475 (2003)
PMID 14661958 DOI 10.1021/bi034776z
Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme.
Ikushiro H., Hayashi H., and Kagamiyama H.
Biochim. Biophys. Acta 1647, 116–120 (2003)
PMID 12686119 DOI 10.1016/S1570-9639(03)00074-8
Strain and catalysis in aspartate aminotransferase.
Hayashi H, Mizuguchi H, Miyahara I, Islam MM, Ikushiro H, Nakajima Y, Hirotsu K, Kagamiyama H.
Biochim. Biophys. Acta 1647, 103–109 (2003)
PMID 12686117 DOI 10.1016/S1570-9639(03)00068-2

2001

Directed evolution of amipicillin-resistant activity from a functionally unrelated DNA fragment: A laboratory model of molecular evolution.
Yano, T. and Kagamiyama, H.
Proc. Natl. Acad. Sci. USA 98(3), 903–907 (2001)
PMID 14661958 DOI 10.1021/bi034776z
Disruption of Thermus thermophilus genes by homologous recombination using a thermostable kanamycin-resistent marker.
Hashimoto, Y. Yano, T., Kuramitsu, S., and Kagamiyama, H.
FEBS Lett. 506(3), 231–234 (2001)
PMID 11602251 DOI 10.1016/S0014-5793(01)02926-X
Demonstration of the importance and usefulness of manipulating non-active-site residues in protein design.
Shimotohno, A., Oue, S., Yano, T., Kuramitsu, S., and Kagamiyama, H.
J. Biochem. 129(6), 943–948 (2001)
PMID 11388910 DOI 10.1093/oxfordjournals.jbchem.a002941
A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction.
Ikushiro H, Hayashi H, Kagamiyama H.
J. Biol. Chem. 276, 18249–18256 (2001)
PMID 11279212 DOI 10.1074/jbc.M101550200
The rate-determining step in P450C21-catalyzing reactions in a membrane-reconstituted system.
Kominami S, Owaki A, Iwanaga T, Tagashira-Ikushiro H, Yamazaki T.
J. Biol. Chem. 276, 10753–10758 (2001)
PMID 11154687 DOI 10.1074/jbc.M006043200
Nuclear localization of yeast Nfs1p is required for cell survival.
Nakai Y, Nakai M, Hayashi H, Kagamiyama H.
J. Biol. Chem. 276(11), 8314–8320 (2001)
PMID 11110795 DOI 10.1074/jbc.M007878200

2000

Cocrystallization of a mutant aspartate aminotransferase with a C5-dicarboxylic substrate analog: Structural comparison with the enzyme-C4-dicarboxylic analog complex.
Oue, S., Okamoto, A., Yano, T., and Kagamiyama, H.
J. Biochem. 127(2), 337–343 (2000)
PMID 10731702 DOI 10.1093/oxfordjournals.jbchem.a022612
Activation of the coenzyme at the early step of the catalytic cycle of tryptophanase.
Ikushiro H, Kagamiyama H.
Biofactors 11, 97–99 (2000)
PMID 10705973 DOI 10.1002/biof.5520110128

1999

Acid-base chemistry of the reaction of aromatic L-amino acid decarboxylase and dopa analyzed by transient and steady-state kinetics: preferential binding of the substrate with its amino group unprotonated.
Hayashi, H., Tsukiyama, F., Ishii, S., Mizuguchi, H., and Kagamiyama, H.
Biochemistry 38, 15615–15622 (1999)
PMID 10569946 DOI 10.1021/bi9909795
Directed evolution of thermostable kanamycin-resistance gene: A convenient selection marker for Thermus thermophilus.
Hoseki, J., Yano, T., Koyama, Y., Kuramitsu, S., and Kagamiyama, H.
J. Biochem. 126(5), 951–956 (1999)
PMID 10544290 DOI 10.1093/oxfordjournals.jbchem.a022539
The active site of Paracocus denitrificans aromatic amino acid aminotransferase has contrary properties: flexibility and rigidity.
Okamoto, A., Ishii, S., Hirotsu, K., and Kagamiyama, H.
Biochemistry 38, 1176–1184 (1999)
PMID 9930977 DOI 10.1021/bi981921d
Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues.
Oue, S., Okamoto, A., Yano, T., and Kagamiyama, H.
J. Biol. Chem. 274(4), 2344–2349 (1999)
PMID 9891001 DOI 10.1074/jbc.274.4.2344

1998

Aromatic L-amino acid decarboxylase: conformational change in the flexible region around Arg344 is required during the transaldimination process.
Ishii, S., Hayashi, H., Okamoto, A., and Kagamiyama, H.
Protein Sci. 7, 1802–1810 (1998)
PMID 10082378 DOI 10.1002/pro.5560070816
cDNA cloning and characterization of mouse nifS-like protein, m-Nfs1: mitochondrial localization of eukaryotic NifS-like proteins.
Nakai Y, Yoshihara Y, Hayashi H, Kagamiyama H.
FEBS Lett. 433(1-2), 143–148 (1998)
PMID 9738949 DOI 10.1016/S0014-5793(98)00897-7
Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: a substrate recognition site constructed by rearrangement of hydrogen bond network.
Okamoto A, Nakai Y, Hayashi H, Hirotsu K, Kagamiyama H.
J. Mol. Biol. 280(3), 443–461 (1998)
PMID 9665848 DOI 10.1006/jmbi.1998.1869
Analysis of the pH- and ligand-induced spectral transitions of tryptophanase: activation of the coenzyme at the early steps of the catalytic cycle.
Ikushiro H, Hayashi H, Kawata Y, Kagamiyama H.
Biochemistry 37, 3043–3052 (1998)
PMID 9485457 DOI 10.1021/bi971995+
Directed evolution of an aspartate aminotransferase with new substrate specificities.
Yano, T., Oue, S., and Kagamiyama, H.
Proc. Natl. Acad. Sci. USA 95(10), 5511–5515 (1998)
PMID 7961737 DOI 10.1073/pnas.95.10.5511

1997

An anomalous side reaction of the Lys303 mutant aromatic L-amino acid decarboxylase unravels the role of the residue in catalysis.
Nishino, J., Hayashi, H., Ishii, S., and Kagamiyama, H.
J. Biochem. 121, 604–611 (1997)
PMID 9133632 DOI 10.1093/oxfordjournals.jbchem.a021628
Paracoccus denitrificans aromatic amino acid aminotransferase: a model enzyme for the study of dual substrate recognition mechanism.
Oue S, Okamoto A, Nakai Y, Nakahira M, Shibatani T, Hayashi H, Kagamiyama H.
J. Biochem. 121(1), 161–171 (1997)
PMID 9058208 DOI 10.1093/oxfordjournals.jbchem.a021561

1996

Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis.
Ishii, S., Mizuguchi, H., Nishino, J., Hayashi, H. and Kagamiyama, H.
J. Biochem. 120, 369–376 (1996)
PMID 8889823 DOI 10.1093/oxfordjournals.jbchem.a021422
Cloning and characterization of the tyrB gene from Salmonella typhimurium.
Nakai Y, Hayashi H, Kagamiyama H.
Biochim. Biophys. Acta. 1308(3), 189–192 (1996)
PMID 8809108 DOI 10.1016/0167-4781(96)00113-3

1994

NMR studies of 1H resonances in the 10-18-ppm range for aspartate aminotransferase from Escherichia coli.
Metzler, D. E., Metzler, C. M., Scott, R. D., Mollova, E. T., Kagamiyama, H., Yano, T., Kuramitsu, S., Hayashi, H., Hirotsu, K., and Miyahara, I.
J. Biol. Chem. 269(45), 28027–28033 (1994)
PMID 7961737

1993

A hydrogen-bonding network modulating enzyme function: Asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase.
Yano, T., Mizuno, T., and Kagamiyama, H.
Biochemistry 32(7), 1810–1815 (1993)
PMID 8439541 DOI 10.1021/bi00058a015
Role of an active site residue analyzed by combination of mutagenesis and coenzyme analog.
Yano, T., Hinoue, Y., Chen, V. J., Metzler, D. E., Miyahara, I., Hirotsu, K., and Kagamiyama, H.
J. Mol. Biol. 234(4), 1218–1229 (1993)
PMID 8263922 DOI 10.1006/jmbi.1993.1672

1992

Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: The amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5′-phosphate.
Yano, T., Kuramitsu, S., Tanase, S., Morino, Y., and Kagamiyama, H.
Biochemistry 31(25), 5878–5887 (1992)
PMID 1610831 DOI 10.1021/bi00140a025

1991

The role of His143 in the catalytic mechanism of Escherichia coli aspartate aminotransferase.
Yano, T., Kuramitsu, S., Tanase, S., Morino, Y., Hiromi, K., and Kagamiyama, H.
J. Biol. Chem. 266(10), 6079–6085 (1991)
PMID 2007566

総説・著書等

2015

セリンパルミトイル転移酵素の反応制御機構 ―変異酵素の副反応から明らかになった立体化学的反応制御―
生化学 87, 298–307 (2015)
PMID 26571594 DOI 10.14952/SEIKAGAKU.2015.870298

2014

第3版 ビタミン・ミネラルの安全性(ジョン・ハズコック著)
生城浩子(翻訳監修)
日本ビタミン学会,2014
高度好熱菌由来ホモセリン脱水素酵素の結晶学的研究
赤井翔太,生城浩子,澤井大樹,林秀行,神谷信夫,宮原郁子
ビタミン 88, 358–365 (2014)
ビタミン B6
生城浩子(翻訳)
最新栄養学〔第10版〕,建帛社,東京,2014

2011

Mechanistic enzymology of serine palmitoyltransferase.
Ikushiro H., Hayashi H.
Biochim. Biophys. Acta 1814, 1474–1480 (2011)
PMID 21315853 DOI 10.1016/j.bbapap.2011.02.005
第3章 タンパク質の抽出法 I-3 酵母
中井正人,中井由実
無敵のバイオテクニカルシリーズ 改訂第4版 タンパク質実験ノート(上)「タンパク質をとり出そう(抽出・精製・発現編)」,羊土社,東京,pp. 53–58,2011
ISBN 978-4-89706-943-2
細菌セリンパルミトイル転移酵素の構造と触媒機構解析
生城浩子,林秀行
生化学 83, 105–110 (2011)
PMID 21404641

2010

セリンパルミトイル転移酵素の触媒反応における His159 の多機能的役割
生城浩子,白岩有桂,林秀行
ビタミン 84, 423–431 (2010)
NAID 110007730458
ビタミン B6(概要と歴史)
生城浩子,林秀行
ビタミン総合事典(日本ビタミン学会 編),朝倉書店,東京,pp. 212–213,2010
ISBN 978-4-254-10228-4
ビタミン B6(補酵素作用)
林秀行,生城浩子
ビタミン総合事典(日本ビタミン学会 編),朝倉書店,東京,pp. 220–225,2010
ISBN 978-4-254-10228-4

2008

スフィンゴ脂質生合成を律速するセリンパルミトイル転移酵素の研究
生城浩子
ビタミン 82, 101–114 (2008)
日本ビタミン学会学会賞(奨励賞)受賞講演
NAID 110006596181

2007

セリンパルミトイル転移酵素における基質アナログを用いたキノノイド中間体形成過程の解析
生城浩子,藤井茂,林秀行
ビタミン 81, 223–234 (2007)
NAID 110006291281
タンパク質の機能を知る
倉光成紀,矢野貴人
構造生物学 — ポストゲノム時代のタンパク質研究(倉光成紀,杉山政則 編),共立出版,東京,pp. 56–68,2007
ISBN 978-4-320-05649-7
「ビタミン」「ホルモン」「ミネラル」「核酸・遺伝子・遺伝情報」「臓器の生化学」「疾患の生化学」
矢野貴人
医療・福祉系学生のための専門基礎科目(河野公一 編集代表),金芳堂,京都,pp. 274–300,2007
ISBN 978-4-7653-1562-3

2006

Structural Biology of Sphingolipid Synthesis.
Ikushiro H, Okamito, A, Hayashi H.
in Sphingolipid Biology (Hirabayashi, Y., Igarashi, Y., Merrill, A.H. Jr. eds.), pp. 483–492, Springer Japan, Tokyo (2006)
ISBN 978-4-431-34200-7

2004

第3章 タンパク質の抽出法 I. 細胞の破砕と分画 I-3 酵母
中井正人,中井由実
無敵のバイオテクニカルシリーズ 改訂第3版 タンパク質実験ノート(上)「抽出・分解と組換えタンパク質の発現」,羊土社,東京,pp. 53–58,2004
ISBN 978-4-8970-6918-0

2003

Directed evolution のさまざまな応用例
矢野貴人
日本農芸化学会誌 77, 425–427 (2003)
DOI 10.1271/nogeikagaku1924.77.425

2001

指向進化による酵素の基質特異性の改変
矢野貴人
シリーズ・バイオサイエンスの新世紀第3巻「タンパク質の分子設計」(後藤祐児,谷澤克行 編),共立出版,東京,pp. 160–170,2001
ISBN 978-4-320-05554-4

2000

Mitochondrial Localization of Eukaryotic NifS-Like Proteins.
Nakai Y., Yoshihara Y., Nakai M., Hayashi H., and Kagamiyama H.
Biochemistry and Molecular Biology of Vitamin B6 and PQQ-dependent Proteins, 129–133 (2000) (Proceeding)
DOI 10.1007/978-3-0348-8397-9_21 ISBN 978-3-0348-9549-1 (Print) 978-3-0348-8397-9 (Online)
Expression and purification of serine palmitoyltransferase.
Ikushiro H., Hayashi H., and Kagamiyama H.
Biochemistry and Molecular Biology of Vitamin B6 and PQQ-dependent Proteins, 251–254 (2000) (Proceeding)
DOI 10.1007/978-3-0348-8397-9_41 ISBN 978-3-0348-9549-1 (Print) 978-3-0348-8397-9 (Online)

1998

アスパラギン酸アミノ基転移酵素の遺伝的改変
矢野貴人,鏡山博行
遺伝 42, 8–12 (1998)
NAID 40000131256
A biosynthetic approach for the incorporation of unnatural amino acids into proteins.
Thorson, J.S., Cornish, V.N., Barrett, J.E., Cload, S.T., Yano, T., and Schultz, P.G.
in Methods in Molecular Biology vol. 77 “Protein Synthesis: Methods and Protocols” (Martin, R. eds.), pp. 43–73, Humana Press Inc., Totowa, New Jersey (1998)
ISBN 978-0-89603-397-9

1993

アスパラギン酸アミノトランスフェラーゼ
矢野貴人,鏡山博行
新生化学実験講座第1巻「タンパク質VII タンパク質工学」(太田隆久,崎山文夫,鈴木紘一 編),東京化学同人,東京,pp. 407–419,1993
NAID 110003659747 NCID AN00214125