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A B S T R A C T   

Gastrointestinal stromal tumor (GIST) is the most prevalent mesenchymal tumor of the digestive tract. Its growth 
is primarily influenced by mutations in KIT or PDGFRA. Surgery is the primary treatment option for GIST; 
however, KIT inhibitors, such as imatinib, are used for inoperable cases. Resistance to imatinib is an upcoming 
challenge, especially because the effectiveness of alternative drugs is limited. Enhancement of the glycolysis 
pathway in cancer cells has been identified as a key feature in cancer. This unique metabolic activity has im-
plications on tumor growth, prognosis, and resistance to therapy, even in GIST. Members of the glucose trans-
porter (GLUT) family (particularly GLUT-1) play a significant role in GIST progression and response to treatment. 
Diagnostic imaging using 18F-fluorodeoxyglucose positron emission tomography/computed tomography, which 
enables visualization of glucose metabolism, can aid in GIST diagnosis and risk assessment. The interplay be-
tween glycolysis and GIST can lead to the development of various therapeutic strategies, especially those 
involving glycolysis-related molecules, such as hexokinase and lactate dehydrogenase. However, further research 
is required to understand the full spectrum of glycolysis in GIST and its therapeutic potential. Herein, we present 
an exhaustive overview and analysis of the role of glycolysis in GIST, especially as a therapeutic target.   

Introduction 

Gastrointestinal stromal tumor (GIST) is the most common mesen-
chymal tumor of the digestive tract [1]. GIST primarily develops due to 
the constitutive activation of the receptor tyrosine kinase KIT or 
PDGFRA, with approximately 75 % of GISTs harboring gain-of-function 
mutations in KIT [2,3]. 

Surgical resection is the primary treatment option for GISTs that can 
be removed. However, for GISTs that are unresectable, metastatic, or 
recurrent, KIT inhibitors, such as imatinib mesylate (also known as 
imatinib), are administered [4-6]. Drug resistance represents a major 
obstacle to the treatment of GISTs. Typically, resistance to imatinib 
develops after a median duration of 18–24 months of therapy [7,8]. 
While sunitinib and regorafenib are considered effective for treating 
imatinib-resistant GIST, the median progression-free survival is 8.5 
months for sunitinib and 4.8 months for regorafenib [9-11]. A recent 
study has highlighted the potential of TAS-116, a heat shock protein 90 
inhibitor, in the treatment of treatment-resistant advanced GISTs [12]. 

Nonetheless, only a few chemotherapy regimens are available for GIST, 
and no chemotherapy regimens are available for imatinib-resistant 
GIST. 

Tumor cells favor aerobic glycolysis, a phenomenon observed when 
sufficient oxygen is available. This pathway generates less energy than 
mitochondrial oxidative phosphorylation, which occurs in healthy cells. 
Tumor cells facilitate nucleic acid synthesis and promote rapid growth 
using the pentose phosphate pathway [13,14]. Several studies have re-
ported on the association between this distinct metabolic fingerprint and 
various hallmarks, including tumor cells’ progression and resistance to 
chemotherapy [15-17]. 

In the context of GIST, there is a growing body of evidence suggesting 
that this cancer-specific metabolic paradigm influences tumor malig-
nancy, tumor risk stratification, and resistance to imatinib [18-20]. 
However, the relationship between glycolysis and GIST remains unclear. 

Here, we provide a brief overview and analysis of the role of 
glycolysis in GIST, laying special emphasis on potential avenues for 
metabolic research and underscoring its merit as an intriguing 
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therapeutic target. 

Glucose transporter (GLUT) 

GLUT serves as the initial rate-limiting step in cellular glucose 
metabolism. Within the GLUT family, GLUT-1 predominantly regulates 
basal glucose uptake, ensuring the maintenance of foundational cellular 
glucose metabolism. Thus, this transporter is essential in the modulation 
of cellular energy production [21,22]. 

In the context of GIST, it has been demonstrated that elevated GLUT- 
1 expression corresponds to an increased tumor risk grade [19]. In a 
study assessing CD63 (a significant protein of the transmembrane 4 
superfamily and an exosomal marker) expression in conjunction with 
GLUT-1 expression, a significant correlation was found between GLUT-1 
expression and CD63 expression in tumor cells among 54 patients with 
CD117(c-kit)-positive gastric GIST who had not undergone prior treat-
ment with imatinib or other chemotherapy agents, and high levels of 
GLUT-1 and CD63 were associated with a substantial decrease in 
disease-free survival [18]. Conversely, another study examining the 
characteristics of small extracellular vesicles derived from GIST cells in 
the plasma of patients with GIST suggested a correlation between an 
unfavorable prognosis and elevated carcinoembryonic antigen levels 
and/or diminished GLUT-1 levels [23]. Notably, direct comparisons 
between the expression levels of GLUT-1 and the levels of GLUT-1 in 
small extracellular vesicles may not be feasible, possibly accounting for 
the discrepancy observed in the abovementioned two studies [23]. Here, 
we conducted a comparative analysis between GIST cell lines with sec-
ondary mutations in PDGFRA exon 12 and the GIST-T1 cell line. Inter-
estingly, our findings revealed that imatinib treatment led to the 
downregulation of GLUT-1 and other components of the glycolysis 
pathway in parental GIST-T1 cells, even at low concentrations. In 
contrast, imatinib treatment increased the expression of these compo-
nents in imatinib-resistant cells [20]. Therefore, we considered that the 
glycolysis pathway is essential for the acquisition of imatinib resistance 
by GIST cells and for cell survival. 

GLUT-2 is predominantly localized in pancreatic beta cells, hepato-
cytes, and renal tubular cells, whereas GLUT-3 is mainly expressed in 
nervous tissues [24]. In a study that assessed the potential advantages of 
continuous versus intermittent imatinib administration in mice 
implanted with an imatinib-resistant GIST cell line harboring a sec-
ondary mutation in KIT exon 17, cytoplasmic GLUT-2 expression was 
significantly elevated in the treated group compared with the untreated 
group. Moreover, the cytoplasmic and membrane-bound GLUT-3 levels 
were significantly higher in the intermittent treatment group than in the 
continuous treatment group [25]. However, the significance of these 
findings and their underlying mechanisms are yet to be fully elucidated. 

GLUT-4 is a high-capacity glucose transporter primarily found in 
nondividing cells, such as those in adipose tissue, skeletal muscle, and 
the myocardium [26]. In a study conducted on 57 patients with GIST 
receiving neoadjuvant chemotherapy with imatinib, all patients 
exhibited detectable GLUT-4 levels before imatinib therapy. However, 
among 22 patients whose tumor samples were obtained during surgery 
after neoadjuvant chemotherapy, 19 showed decreased GLUT-4 
expression [27]. Based on these data, imatinib was considered to 
interact with glycolysis and GLUT-4 expression. 

Overall, these findings suggest that a multitude of GLUT subtypes are 
involved in the pathogenesis of imatinib resistance in GIST. The upre-
gulation of GLUT expression can play a vital role in the acquisition of 
imatinib resistance by GIST and cell survival. 

Glycolysis-related molecules besides GLUT 

In addition to GLUT, hexokinase (HK), phosphofructokinase 1 
(PFK1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyru-
vate kinase (PK), lactate dehydrogenase (LDH), and monocarboxylate 
transporters (MCT) are recognized to be associated with glycolysis [28]. 

A previous study demonstrated increased activity of HK1 (one of the HK 
isoforms), PKM2 (one of the PK isoforms), and LDH in high-risk grade 
tumors, suggesting their potential in the preoperative prediction of 
malignancy [19]. Furthermore, research into the association between 
MCT and GIST has unveiled the pronounced expression of MCT1, MCT2, 
and MCT4 [29]. The coexpression of MCT1 and its chaperone, CD147, 
has been implicated in the aggressiveness of GIST and correlated with 
reduced patient survival [29]. While numerous studies have reported on 
the association between glycolysis-related molecules and various types 
of cancer, there has been a paucity of research focusing solely on GIST 
[15-17]. A summary of glycolysis-related molecules in GIST is shown in 
Table 1. 

Diagnostic imaging 

18F-Fluorodeoxyglucose positron emission tomography/computed 
tomography (18F-FDG PET/CT) is one of the most commonly used 
functional imaging modalities in clinical practice. This technique uses a 
radioisotope to trace glucose and is recommended for GIST imaging [30, 
31]. The imaging diagnosis using 18F-FDG PET/CT is based on glucose 
metabolism in vivo [32,33]. The accumulation of the tracer is primarily 
mediated by GLUT [34,35]. Notably, FDG PET/CT has been demon-
strated to have a high predictive prognostic value for recurrence-free 
survival in patients with localized primary GIST through assessment of 
preoperative metabolic tumor volume (MTV) and total lesion glycolysis 
(TLG) [36]. Regarding GIST patients with KIT exon 11 mutations, FDG 
PET/CT demonstrated that imatinib treatment reduces FDG uptake 
levels within 1–7 days post treatment [27]. Immunohistochemical 
findings have suggested the involvement of GLUT-4 in FDG uptake in 
GIST, which is confirmed by the decrease in GLUT-4 levels following 
imatinib therapy [27]. Additionally, in vitro treatment of GIST cells with 
imatinib caused translocation of GLUT-4 from the plasma membrane to 
the cytosol via endocytosis as shown by lower plasma membrane-bound 
GLUT-4 levels [37]. Imatinib directly affects glycolysis and GLUT-4 
expression, thereby resulting in decreased FDG uptake [27,37]. FDG 
uptake evaluations on preoperative PET/CT of 40 patients with GIST 
revealed positive correlations between FDG uptake and tumor size; 
tumor risk grade per the Fletcher classification; and GLUT-1, HK1, and 
LDHA expression levels [19]. Analyses were conducted on several 
metabolic parameters, including maximum standardized uptake value 

Table 1 
Role of glycolytic molecules in gastrointestinal stromal tumor.  

Molecules Associations and functions References 

GLUT-1 Elevated GLUT-1 expression corresponds to heightened 
tumor risk grade 

19  

GLUT-1 expression positively correlates with CD63 
expression 

18  

High GLUT-1 and CD63 levels in GIST cells correlate 
with lower disease-free survival 

18  

High carcinoembryonic antigen or low GLUT-1 in 
plasma small extracellular vesicles indicates poor 
prognosis 

23  

Imatinib reduced GLUT-1 in GIST-T1 cells but 
increased glycolysis in imatinib-resistant cells 

20 

GLUT-2 In imatinib-treated mice with resistant GIST, GLUT-2 
expression was higher than in untreated mice 

25 

GLUT-3 Intermittent imatinib treatment increased GLUT-3 
levels compared to continuous treatment in mice 

25 

GLUT-4 Neoadjuvant imatinib therapy reduced GLUT-4 
expression 

27 

HK, PK, 
LDH 

HK1, PKM2, and LDH activity elevated in high-risk 
grade 

19 

MCT MCT1 and CD147 coexpression are associated with 
GIST aggressiveness and reduced patient survival 

29 

GIST: gastrointestinal stromal tumor; GLUT: glucose transporter; HK: hexoki-
nase; LDH: lactate dehydrogenase; MCT: monocarboxylate transporters; PK: 
pyruvate kinase 
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corrected for body weight (SUVbw), lean body mass (SUVlbm), and 
body surface area (SUVbsa), as well as MTV and TLG in 35 patients with 
GIST [38]. The study, which included 35 patients with GIST, aimed to 
assess the predictive capability of preoperative FDG PET/CT in deter-
mining the malignancy risk of GIST and the likelihood of recurrence and 
mortality. Although there were no statistically significant associations 
between PET/CT metabolic parameters (SUVbw, SUVlbm, SUVbsa, 
MTV, and TLG) and patient demographics, tumor size, mitotic index, 
Ki-67, and tumor location, these parameters were positively correlated 
with the tumor risk grade per the Fletcher classification. Moreover, MTV 
and TLG were identified as independent outcome predictors for 
progression-free survival [38]. The report of the aforementioned study 
suggests the profound involvement of molecules associated with 
glycolysis, including GLUT, in the risk of GIST malignancy and recur-
rence. However, the clinical utility of PET/CT in GIST remains unclear, 
and there is lack of direct evidence to show the extent of the effect of 
imatinib treatment on FDG uptake via downregulation of GLUT 
contributing to the risk of malignancy and recurrence of GIST. A sum-
mary of FDG PET/CT in GIST is shown in Table 2. 

Oxidative phosphorylation 

Using GIST cell lines, validation studies revealed differences in the 
metabolic activity of glycolysis and oxidative phosphorylation 
(OXPHOS) between imatinib-sensitive GIST and imatinib-resistant GIST. 
However, these varied depending on the specific cell line examined. For 
instance, imatinib-resistant GIST 882 cells showed a distinct metabolic 
profile with increased levels of glycolysis and OXPHOS compared with 
their original parent cells. In contrast, imatinib-resistant cells derived 
from the GIST-T1 cell line had glycolytic activity that was comparable to 
that of their parent cells; however, their mitochondrial respiration was 
decreased. Moreover, imatinib-resistant GIST 882 cells were more 
vulnerable to glycolysis inhibition than GIST 882 cells, whereas 
imatinib-resistant GIST-T1 cells were more resistant to OXPHOS inhi-
bition than GIST-T1 cells [39,40]. 

The intertumor heterogeneity in the metabolic phenotype of 
imatinib-resistant GIST needs to further investigated. Imatinib can in-
fluence the metabolic phenotype of GIST, potentially contributing to 
imatinib resistance. We also speculate that the observed differences in 
metabolic activity levels could be attributed to a process known as the 
reverse Warburg effect. In this mechanism, metabolites such as lactate 
and pyruvate are produced by oxidative stressed cancer-associated fi-
broblasts and are used by cancer cells for ATP synthesis within the 
mitochondria [41]. However, no studies have confirmed the presence of 
this phenomenon in GIST. 

Biomarkers 

Recent studies have highlighted the potential prognostic significance 
of various DNAs (KIT, PDGFRA, BRAF, SDH, SETD2, and ROR2) and 
microRNAs (miR-221, miR-222, miR-494, miR-196a, miR-320a, miR- 
218, miR-125a-5p, and miR-518a-5p) in GIST [42]. However, only a 
few molecular markers have been developed for GIST prognosis. At 
present, there are no established circulating biomarkers associated with 
glycolysis [42]. Fig. 1 illustrates the relationship among GIST, glycol-
ysis, and oxidative phosphorylation. 

EVs: extracellular vesicles; GLUT: glucose transporter; HK1: hexo-
kinase 1; PKM2: pyruvate kinase M2; LDH: lactate dehydrogenase; MCT: 
monocarboxylate transporter; MTV: metabolic tumor volume; PFS: 
progression-free survival: RFS: recurrence-free survival; SUVbsa: stan-
dardized uptake value corrected for body surface area; SUVbw: stan-
dardized uptake value corrected for body weight; SUVlbm: standardized 
uptake value corrected for lean body mass; TLG: total lesion glycolysis 

Therapeutics targeting metabolic pathways 

Considering substantial evidence regarding lactate and altered 
cellular metabolism in various cancers, targeting these aspects is now a 
major focus for pharmaceutical drug development [28]. While research 
has highlighted the effectiveness of glycolysis pathway inhibitors in 
various cancer types and their anti-GIST potential is being explored, 
several aspects remain unclear [20,28]. 

GLUT inhibitors have started being increasingly recognized for their 
potential to target glucose dependency in cancer and other diseases, 
thereby opening new avenues for future drug development [43]. Our 
research indicated that WZB117 induced apoptosis in imatinib-resistant 
GIST cells [20]. To the best of our knowledge, no other studies have 
reported on the association between GLUT inhibitors and GIST. 

Gossypol, a recognized LDHA inhibitor, and 3-bromopyruvate (3- 
BP), an inhibitor of HK2, have demonstrated efficacy against specific 
imatinib-resistant GIST cell lines. However, the mechanism underlying 
these cell growth suppressions is yet to be elucidated [40,44]. 2-deoxy-
glucose (2DG), an HK inhibitor, has been identified as a potential agent 
for treating tumors [45]. While an in vitro study has demonstrated that 
2DG possesses significant disease-specific effects, its primary action in 
GIST is not the disruption of energy production through glycolysis in-
hibition. 2DG primarily functions by inhibiting KIT through suppression 
of KIT glycosylation [46]. Targeting MCT has emerged as a potential 
therapeutic strategy in cancer. Pharmacological and genetic suppression 
of MCT1 or MCT4 lead to reduced tumor cell proliferation in vitro and in 
vivo, making them promising therapeutic targets [47,48]. While the ef-
ficacy of MCT inhibitors has been indicated in several types of tumors 
[49,50], there is currently no evidence supporting their anti-GIST effi-
cacy. As shown in Fig. 2, it is noteworthy that very few reports have 
demonstrated the efficacy of drugs targeting the glycolytic system in 
GIST. 

2PG: 2-phosphoglycerate; 3-BP: 3-bromopyruvate; ENO: enolase; 
Fructose 6-P: fructose-6-phosphate; GAPDH: glyceraldehyde-3- 
phosphate dehydrogenase; Glucose 6-P: glucose-6-phosphate; LDH: 
lactate dehydrogenase; MCT: monocarboxylate transporter; PEP: phos-
phoenolpyruvate; PFK: phosphofructokinase; PK: pyruvate kinase 

Discussion and future perspectives 

As discussed in this review, the critical association between GIST and 
glycolysis is yet to be fully elucidated. Given the rarity of GIST and the 
limited treatment options currently available, there is a compelling need 
for further exploration of the association between GIST and glycolysis. 
Such investigations can potentially unveil novel anti-GIST therapeutic 
strategies in the future. Furthermore, the mechanism of imatinib resis-
tance should be clarified from the perspective of the glycolytic system 
and strategies to overcome imatinib resistance should be developed. 

Table 2 
Overview of 18F-Fluorodeoxyglucose positron emission tomography/computed.  

Associations and functions References 

FDG PET/CT, using preoperative MTV and TLG assessments, strongly 
predicts RFS in localized primary GIST patients 

36 

Imatinib treatment lowers FDG uptake within 1–7 days 27 
Imatinib downregulates glycolysis and GLUT-4 expression, leading to 

reduced FDG uptake 
27, 37 

FDG uptake positive correlates with tumor size, Fletcher risk grade, and 
the expression of GLUT-1, HK1, and LDHA 

19 

PET/CT metabolic parameters (SUVbw, SUVlbm, SUVbsa, MTV, and 
TLG) positive correlate with Fletcher risk grade but not with patient 
background, tumor size, mitotic index, Ki-67, or location 

38 

MTV and TLG independently predict PFS outcomes 38 

FDG: F-Fluorodeoxyglucose; GIST: gastrointestinal stromal tumor; GLUT: 
glucose transporter; HK: hexokinase; LDHA: lactate dehydrogenase; MTV: 
metabolic tumor volume; PET/CT: positron emission tomography/computed 
tomography; PFS: progression-free survival; RFS: recurrence-free survival; 
SUVbsa: standardized uptake value corrected for body surface area; SUVbw: 
standardized uptake value corrected for body weight; SUVlbm: standardized 
uptake value corrected for lean body mass; TLG: total lesion glycolysis 
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Glycolysis inhibition represents a promising target for therapeutic 
development. Despite several key molecules in the glycolysis pathway, 
only three glycolytic inhibitors exhibit potential anti-GIST efficacy. 
Furthermore, differences exist among effective inhibitors depending on 
the metabolic phenotype of the cell lines. Further studies are required to 
substantiate these findings and establish the effectiveness of glycolysis 
inhibitors as potential anti-GIST therapeutic targets. 

Conclusion 

This review discusses the involvement of glycolysis-related mole-
cules in the pathogenesis of GIST and their potential as therapeutic 
targets. It also explores prospects for GIST research within glycolysis. 
Targeting glycolysis as a therapeutic approach shows significant prom-
ise as a novel strategy for GIST treatment. The insights gained from the 
reviewed reports hold the potential to lead to significant advancements 
in the field of GIST treatment. 
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Fig. 1. A schematic illustration of the relationship between gastrointestinal stromal tumor (GIST) and glycolysis and oxidative phosphorylation (OXPHS). Partic-
ularly, we focused on the relationship bwtween GIST and imatinib, a representative drug for treating GIST. Moreover, the usefulness of 18F-Fluorodeoxyglucose 
positron emission tomography/computed tomography (FDG PET/CT) and findings about the glycolytic system as a biomarker in GIST are presented. For details, 
please refer to sections from Glucose transporter (GLUT) to Biomarkers. 

Fig. 2. A schematic representation of aerobic glycolysis and its inhibitors in 
gastrointestinal stromal tumor (GIST) cells. The three drugs (WZB117, 3-BP, 
and Gossypol) inhibit glucose transporter (GLUT), hexokinase 2 (HK2), and 
lactate dehydrogenase (LDH), respectively. Only these three glycolytic in-
hibitors are potentially effective against GISTs. Note: 2-Deoxyglucose (2DG) 
serves as an HK inhibitor; however, its principal action within GIST does not 
primarily involve the curtailment of energy generation through inhibition of 
glycolysis. Instead, it mainly operates through repression of KIT by suppressing 
KIT glycosylation. 
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