

Meal inf	orm	atio	n of	the	12 c	oun	tri	es	f	o	m	۱F	=A	0	S	T/	41	Γ		
Meal inform (g/	nation capita/c	in FAC day)	OSTAT			A۱	/era	ge 1	foo	d i	nta	ake	e fi	on	n 2	00	3 1	to 2	201	12
Food and Agriculture Or	ganizatio	on of the	United N	lations	-	Three n	najo	r nu	trie	nt										
119 food items o	f 245 co	ountries	from 19	961																
119 food items	Japan	Russia	Sweden	USA	China		10	0%	1	-		1	-	_			-	-		-
Milk - Excluding Butter	203	481	979	700	82															
Vegetables, Other	228	240	170	186	766															
Wheat	131	358	218	222	182		8	0%												
Milk, Whole	127	350	193	310	75		a													
Potatoes	58	312	159	147	101		and	0%												
Beer	73	211	113	229	71		n n n	0 /0												
Rice (Paddy Equivalent)	222	21	23	34	314		nqe													
Sugar, Raw Equivalent	75	97	109	175	17		ų 4	0%	-											
Maize	31	2	3	35	19		ati													
Sugar (Raw Equivalent)	47	87	101	91	16		Rel													
Pig meat	54	54	99	82	101		2	0%												
Sugar, Refined Equiv	43	80	93	84	15															
Rice (Milled Equivalent)	148	14	16	23	209			0 0/												
Poultry Meat	46	62	42	134	35			0%		a	e	s	c	'	, a	a			~	a
Oranges, Mandarines	28	22	139	83	27				pai	stri	anc	ate	ge	nar	lel	issi	apa	Per	lav	hin
Fruits, Other	28	60	62	62	79				S	Au	Ë	1 St	Š	enr	nez	R	ñ		ŝ	0
Tomatoes	23	64	61	121	78							ite			Ś					
Bovine Meat	24	48	68	109	13							'n								
Cassava	0		0	0	5				_						_					
Nishiiima S et al. 2016									Pro	cei	115		-ipi	us	- (.ari	100	iya	rat	es

*High stability and robustness of the healthy gut microbiome against change in diet? *Same foods did not always make the gut microbiomes more similar than different foods? *Traditional Japanese vegetable dishes (精進料理) are sufficient for health maintenance of Japanese?

<In oral cavity> Multidrug-resistant *Klebsiella* relatively increases by antibiotics administration, resulting in increase in *Klebsiella* reaching the gut.

<In the gut> Antibiotics administration disturbs normal gut microbiome to reduce the ability of colonization resistance, resulting in increase in *Klebsiella* in the gut.

日本人炎症性腸疾患(IBD)患者の腸内細菌叢ではTreg誘導菌種が有意に減少 (15/17株が減少、うち7株が有意に減少)

Strain Total contig Number of		Number of	Most similar strain	Genome size of	16S identity		
Strain	length in Mb	predicted genes		similar strain in Mb	in %		
Strain_01	3.28	3,171	Clostridium ramosum DSM 1402	3.23	96.6		
Strain_03	5.16	4,897	Flavonifractor plautii ATCC 29863	3.81	99.8		
Strain_04	7.40	6,717	Clostridium hathewayi DSM 13479	6.63	95.3		
Strain_06	6.21	5,662	Lachnospiraceae bacterium 6_1_63FAA	2.72	96.5		
Strain_07	6.06	5,968	Clostridium bolteae ATCC BAA-613	6.56	99.5		
Strain_08	3.39	3,312	Erysipelotrichaceae bacterium 2_2_44A	4.97	92.9		
Strain_09	3.51	3,619	Anaerostipes caccae DSM 14662	3.61	97.7		
Strain_13	3.56	3,660	Anaerotruncus colihominis DSM 17241	3.72	100.0		
Strain_14	3.16	3,251	Coprococcus comes ATCC 27758	3.24	93.3		
Strain_15	6.27	6,076	Clostridium asparagiforme DSM 15981	6.22	99.7		
Strain_16	5.44	5,275	Clostridium symbiosum WAL-14163	5.35	99.9		
Strain_18	3.60	3,692	Clostridium ramosum DSM 1402	3.23	100.0		
Strain_21	5.40	5,139	Clostridium sp. D5	5.35	98.9		
Strain_26	3.93	3,935	Clostridium scindens ATCC 35704	3.62	99.6		
Strain_27	7.05	6,724	Lachnospiraceae bacterium 3_1_57FAA_CT1	7.69	97.5		
Strain_28	6.96	6,736	Clostridiales bacterium 1_7_47FAA	6.51	99.7		
Strain_29	7.55	6,912	Lachnospiraceae bacterium 3_1_57FAA_CT1	7.69	99.6		
50 all_29	/.55	0,912	Lacinospiraceae bacterium 5_1_3/FMA_CT1	7.09	99.0		

ほとんどがクロストリジウム系のクラスター IV, XIV, VIIIに属する菌

VE202-01 (Clostridium saccharogumia DSM 17460) VE202-06 (Clostridiales bacterium VE202-06)	Treg-inducing 17 strains
VE202-09 (Clostridiales bacterium VE202-00)	Treg induction by a rationally selected
VE202-13 (Anaerotruncus colihominis DSM 17241)	mixture of Clostridia strains from the human
VE202-14 (Clostridiales bacterium VE202-14)	microbiota.
VE202-15 (Clostridium asparagiforme DSM 15981)	Atarashi K. et al: <i>Nature</i> 500. 232-236 (2013)
VE202-21 (Clostridiales bacterium VE202-21)	
VE202-26 (Clostridium scindens ATCC 35704)	* ほとんどがクロストリジウム系のク
VE202-27 (Clostridiales bacterium VE202-27)	ラスター IV, XIV, VIIIに属する菌
VE202-28 (Clostridiales bacterium VE202-28)	
2H6, VE202-18 (Erysipelatoclostridium ramosum DSM 1402)	
2H11, VE202-03 (Flavonifractor plautii ATCC 29863)	
1F8, VE202-04 (Clostridium hathewayi 12489931)	Six strains are overlapping
1F7, VE202-07 (Clostridium bolteae 90B8)	en en en e er en eppino
1C12, VE202-08 (Dielma fastidiosa)	
1A9, VE202-16 (Clostridium symbiosum WAL-14163)	
2G4 (Clostridium innocuum 2959)	
2G11 (Bacteroides dorei CL02T12C06)	
2F7 (Clostridiales bacterium 2F7)	Th17-inducing 20 strains
2E3 (Clostridiales bacterium 2E3)	inity inducing to strains
2E1 (Anaerostipes caccae DSM 14662)	Th17 Cell Induction by Adhesion of
2D9 (Ruminococcus gnavus CC55_001C)	Microbes to Intestinal Epithelial Cells.
1E3 (Coprobacillus sp. D6)	Atarashi K, et al. <i>Cell</i> 163, 367-380
1E11 (Clostridiales bacterium 1E11)	(2015).
1D4 (Clostridiales bacterium 1D4)	· /
1D2 (Clostridiales bacterium 1D2)	
1D10 (Clostridiales bacterium 1D1)	
1D1 (Clostridiales bacterium 1D10)	
1C2 (Bifidobacterium breve DSM 20213 = JCM 1192)	
1B11 (Bifidobacterium pseudolongum 1B11)	

Translocation of a gut pathobiont drives autoimmunity in mice and humans.

Manfredo Vieira S et al. Science, 359, 1156-1161, 2018.

 Translocation of *Enterococcus gallinarum* to the liver and other systemic tissues triggers autoimmune responses in a genetic background predisposing to autoimmunity.
E. gallinarum-specific DNA was recovered from liver biopsies of autoimmune patients.

trigger bacterial translocation and pathologic Th17 priming in the liver

Under revision

Collaboration with Kanai lab, Keio Univ.

*PSC is a rare, chronic liver disease highly associated with ulcerative colitis (UC).

Feces of UC patients \rightarrow Gnotobiotic mice \rightarrow no liver inflammatory response Feces of PSC patients \rightarrow Gnotobiotic mice \rightarrow liver inflammatory response (Th17 \uparrow)

PSC-fecal gnotobiotic mice

- → Cultured bacterial in the mesenteric lymph nodes (腸間膜リンパ節)
- → Isolated Klebsiella pneumoniae, Proteus mirabilis, and Enterococcus gallinarum.

*The epithelial-damaging effect of KP was strain-specific and associated with the presence of Type VI secretion system.

